- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Zhong, Xiao (3)
-
Capogna, Luca (2)
-
Citti, Giovanna (2)
-
Alahari, Suresh K. (1)
-
Armanios, Beshoy (1)
-
Asahi, Yoh (1)
-
Bayraktar, Salih (1)
-
Bronisz, Agnieszka (1)
-
Castellano, Leandro (1)
-
Cheong, Fook Chiong (1)
-
Conn, Simon J. (1)
-
DiStefano, Johanna K. (1)
-
Gerber, André P. (1)
-
Goel, Ajay (1)
-
Grier, David G. (1)
-
Holm, Anja (1)
-
Ilieva, Mirolyuba (1)
-
Jin, Jing (1)
-
Lin, Chunru (1)
-
Lin, He (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We review the existing literature concerning regularity for the gradient of weak solutions of the subelliptic p-Laplacian differential operator in a domain Ω in the Heisenberg group H^n, with 1 ≤ p < ∞, and of its parabolic counterpart. We present some open problems and outline some of the difficulties they present.more » « less
-
Capogna, Luca; Citti, Giovanna; Zhong, Xiao (, Annales Fennici Mathematici)We prove local Lipschitz regularity for weak solutions to a class of degenerate parabolic PDEs modeled on the parabolic p-Laplacian $$\(\partial_t u= \sum_{i=1}^{2n} X_i (|\nabla_0 u|^{p-2} X_i u),\$$ in a cylinder $$\(\Omega\times\mathbb{R}^+\)$$, where $$ \(\Omega\)$$ is domain in the Heisenberg group $$\(\mathbb{H}^n\)$$, and $$\(2\le p \le 4\)$$. The result continues to hold in the more general setting of contact subRiemannian manifolds.more » « less
-
Shiu, Patrick K.; Ilieva, Mirolyuba; Holm, Anja; Uchida, Shizuka; DiStefano, Johanna K.; Bronisz, Agnieszka; Yang, Ling; Asahi, Yoh; Goel, Ajay; Yang, Liuqing; et al (, Non-Coding RNA)We are delighted to share with you our twelfth Journal Club and highlight some of the most interesting papers published recently [...]more » « less
-
Wang, Chen; Cheong, Fook Chiong; Ruffner, David B.; Zhong, Xiao; Ward, Michael D.; Grier, David G. (, Soft Matter)
An official website of the United States government
